

WEBINAR

## Modelling Cables and Transmission Lines with PSCAD<sup>™</sup>/EMTDC<sup>™</sup>

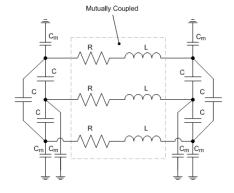
Jeewantha De Silva, Lalin Kothalawala

#### Transmission Lines and Cables



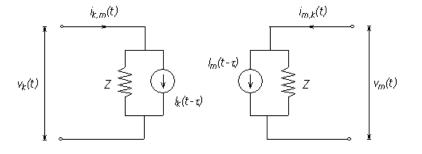
## **Topics Covered**

- Transmission line models in PSCAD
- Basic modeling of transmission lines/cables
- Features such as transposition, cross-bonding, mutual coupling, dc correction etc.
- Application examples





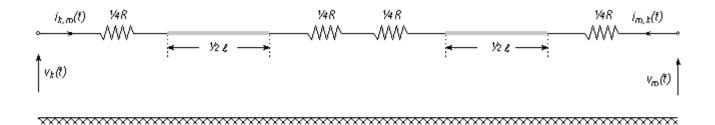

#### Transmission Lines and Cable models

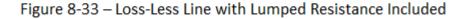



- Highly non-linear due to frequency dependence of conductors & ground path
- Two methods of representation
  - PI-section (lumped passive elements)
    - Short transmission lines



Coupled  $\Pi$ -Section Representation in PSCAD


- Distributed parameter (traveling wave)
  - Bergeron
  - Frequency Dependent (Mode)
  - Frequency Dependent (Phase)






## **Bergeron Model**

- Single frequency model all parameters are derived at a specified frequency
- Distributed LC parameters (roughly equivalent to using an infinite number of PI Sections), except
- a lumped resistance (R) to approximate system losses:  $\frac{1}{2}R$  in the middle and  $\frac{1}{4}R$  at each end
- Used where the specified frequency is most important and also to model the lines few buses away from disturbance







## **Frequency Dependent (Mode) Model**

• Distributed model based on modal transformation

## **Frequency Dependent (Phase) Model**

- Accurately represents the frequency dependency and distributed nature of all parameters (DC to 1 MHz)
- Accurate for highly frequency dependent configurations such as vertically asymmetrical line geometry and underground cables
- Widely used in simulation studies
- Universal Line Model
- Direct formulation in the phase domain avoid problems with modal transformation matrices

#### **Transmission Line Models**



| Issue                                     | Minimum Recommended Cable<br>Model            | importance of Detailed Models<br>(Segments, Bonding, Grounding<br>Frequency-Dependent (FD))                                                   |
|-------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Phase unbalance and transposition         | Bergeron (Unbalanced)<br>Equivalent PI        | Segments are important.<br>FD is not important.                                                                                               |
| Harmonic frequency scans                  | Bergeron<br>Equivalent Pl                     | Segments are not important.<br>FD is moderately important; cable parameters may be re-calculated for each frequency of interest if necessary. |
| TOV – Ground faults and clearing          | Bergeron                                      | Minimal; damping from other system components is more important.                                                                              |
| TOV – Resonance                           | Bergeron                                      | Minimal; damping from other system components is more important.                                                                              |
| TOV – System islanding and load rejection | Bergeron                                      | Minimal; damping from other system components is more important.                                                                              |
| Ferroresonance                            | Bergeron                                      | Minimal; damping from other system components is more important.                                                                              |
| Harmonic sources and flows                | Bergeron<br>Equivalent Pl                     | Segments are not important.<br>FD is moderately important; cable parameters may be re-calculated for each frequency of interest.              |
| Cable energization                        | Bergeron (at Target Frequency)                | Segments are not important.<br>FD is moderately important; this is usually the first case in which to apply an FD model.                      |
| Auto-reclosing overvoltages               | Bergeron                                      | Segments are not important.<br>FD is moderately important, but power-frequency solution should not be compromised.                            |
| Discharge of the cable                    | Bergeron                                      | Minimal.                                                                                                                                      |
| Sheath overvoltages and protection        | Bergeron (Unbalanced)                         | Segments are important.<br>FD is moderately important.                                                                                        |
| DC offset / zero-miss effect              | Bergeron                                      | Minimal.                                                                                                                                      |
| Current transformer (CT) saturation       | Bergeron                                      | Minimal.                                                                                                                                      |
| Capacitive current interruption           | Bergeron                                      | Minimal.                                                                                                                                      |
| Lightning overvoltage                     | Bergeron (Unbalanced, at Target<br>Frequency) | Segments are important.<br>FD is moderately important.                                                                                        |
| Shunt reactor restrike                    | Bergeron                                      | Segments are not important.<br>FD is moderately important.                                                                                    |
| Inductive coordination and EMI            | Bergeron (Unbalanced)<br>Equivalent PI        | Segments are important.<br>FD is not important.                                                                                               |

Source : CIGRE WG C4.502 Power system technical performance issues related to the application of long HVAC cables



## **Long-line corrected RXB values**

- RXB data is usually calculated as unit length parameters (X =  $\omega$ L,B =  $\omega$ C)
- Total RXB values for the entire line do not simply equal to per unit RXB multiplied by length due to the distributed nature of line parameters
- Long-line corrected RXB data represent effective RXB values for entire line
- Caution: Possibility of non-physical values

Positive Sequence (Long-Line Corrected) . . . . . . . . . . . . . . . . . . Resistance Rsa [pul: 0.335573149E-05 Xsq 0.693356747E-04 Reactance [pu]: Susceptance Bsq [pu]: 0.238202641E-03 Surge Impedance Zcsg [pu]: 0.539516942 Zero Sequence (Long-Line Corrected) . . . . . . . . . . . . . Resistance Rsq [pu]: 0.636183683E-04 Reactance Xsq [pu]: 0.233582235E-03 Susceptance Bsg [pu]: 0.140496134E-03 Surge Impedance Zcsg [pu]: 1,28940016



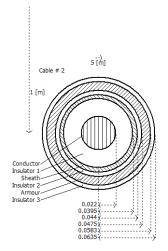
## **Conductor transposition**

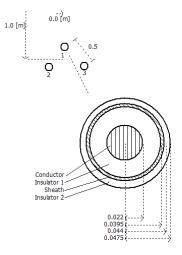
- Actual transposition
  - Each small line segment is modelled separately and transposed manually (very small time step)
  - E.g. Lightning studies, phase unbalanced study
- Ideal transposition
  - Single transmission model for entire line (large time step)
  - Options
    - Disabled
    - Enabled (all together)
    - Enabled (each group separately, zero sequence coupling between circuits)- sequence RXB data display
  - E.g. Transmission line with many transposed segments



## **Conductor elimination and bundling**

- The earth wire/sheath voltage is assumed to be almost zero –typical approximation in many transient studies
- The earth wires/sheaths are mathematically eliminated
- Does NOT mean that the earth wire/sheath is neglected
  - The effect of earth wire/sheath is approximately considered (e.g. losses)
- Transmission line or cable interface should be changed accordingly
- E.g. earth wires, conducting layers (sheath) of short underground cable ,conductor bundles



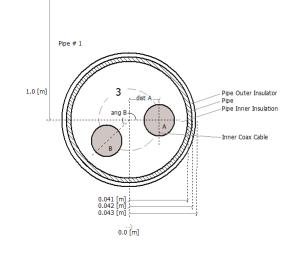


## **Cross-bonding of underground AC cables**

- Minimize sheath losses due to circulating currents for AC cables
- Actual cross-bonding each minor segment is separately modeled
- Ideal cross-bonding
  - Represent cross-bonded AC cable with many segments
  - Approximate method single ideally cross-bonded model for entire line
  - Sheath is ideally transposed and eliminated
  - The cable interface should be changed accordingly



## **Coaxial cables**



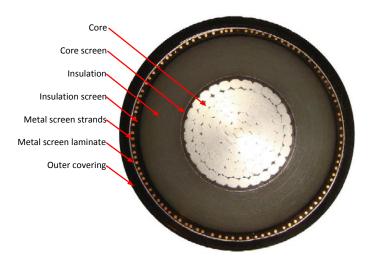



- Modelling of land cables
- Data is required for the Conductor, Sheath, Armour and Insulation Layers
- (dimensions and material properties)

- User friendly cable data entry method
  - typical cable parameters from datasheets
  - single-cable, two- cables or threecables in flat or trefoil configurations
  - Temperature corrections



## **Pipe-type cable**




- For all Cables
  - Aerial or underground cables can be modelled
  - Ideal cross-bonding/Conductor layer elimination
  - Mutual interaction between aerial and underground
  - Semi-conducting layer support

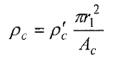
- Modelling of submarine cables
- Common pipe conductor encircling coaxial cables

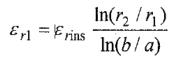


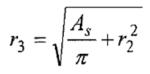
## **Practical cable modelling**



| Core inner radius                    | 0 mm                |
|--------------------------------------|---------------------|
| Core outer radius                    | 20.75 mm            |
| Core material                        | Compact stranded Al |
| Core screen thickness                | 1.5 mm              |
| Insulation radius                    | 39.25 mm            |
| Insulation material                  | XLPE                |
| Insulation screen thickness          | 1 mm                |
| Diameter of each metal screen strand | 1.91 mm             |
| Thickness of Metal screen laminate   | 0.8 mm              |
| Outer covering outer radius          | 47.94 mm            |
| Outer covering material              | XLPE                |


Table 1: Cable data


Source : CIGRE WG C4.502 Power system technical performance issues related to the application of long HVAC cables


- Core conductor
  - Stranded/segmented design
  - Effective resistivity
- Semi-conducting layers
  - High resistance and high relative permittivity (e.g. 1000)
  - Modelled as a part of insulation effective permittivity value
- Wired sheath
  - Approximate by solid conductor (annulus) with effective outer radius
- Dual layer sheath
  - Approximate by solid conductor (annulus) with effective resistivity

Bjørn Gustavsen "Panel Session on Data for Modeling System Transients. Insulated Cables", Proc. IEEE. Power Engineering Soc. Winter Meeting , 2001.

CIGRE WG C4.502 Power system technical performance issues related to the application of long HVAC cables











## **Mutual coupling between multiple towers**

#### • Mutual coupling between overhead line towers

- Model all coupled lines in the definition page
  Or
- Using mutual coupling features
- Mutual coupling between overhead lines and cables
  - E.g. Induced voltage on pipe
  - Model both as cables in the cable definition page
  - Overhead line aerial bare cables



## Stranded conductor (e.g. ACSR)

Neglect steel sub-conductors



| Conductor Data 🔹                 |                                  |  |
|----------------------------------|----------------------------------|--|
| 8 2↓ 🚰 📑                         |                                  |  |
| A Data Entry Configuration       |                                  |  |
| Data entry method                | direct                           |  |
| Path to conductor library file   | C:\home\user\pscad\lineconstants |  |
| Conductor style is               | stranded                         |  |
| Conductor Properties             |                                  |  |
| Name                             | chukar                           |  |
| Outer radius                     | 0.0203454 [m]                    |  |
| Inner radius                     | 0.0 [m]                          |  |
| Total number of strands          | 30                               |  |
| Total number of outer strands    | 18                               |  |
| Strand radius                    | 0.003                            |  |
| DC resistance (entire conductor) | 0.03206 [ohm/km]                 |  |
| Relative permeability            | 1.0                              |  |
| Sag (all conductors)             | 10 [m]                           |  |

 Optical ground wires – model as a stranded conductor neglecting optical part



# DC correction algorithm for HVDC line and cables

- Improve accuracy at frequencies approaching dc for HVDC lines and cables
- Ensure accurate dc response
- Improve stability
- Phase model options> dc correction
- Functional form method
- Add residue/pole method

| DC Correction                            | ▼               |
|------------------------------------------|-----------------|
| ≌ 2↓ 🖀 📑                                 |                 |
| ▲ DC Correction                          |                 |
| DC correction is                         | enabled         |
| Correction method                        | Functional Form |
| Eliminate error at very high frequencies | enabled         |
| Shunt conductance (for cables only)      | 1.0E-9 [mho/m]  |
|                                          |                 |



## **Improving stability**

- Cause: Large ratios of residue/poles in transfer function
- Solution:
  - Phase model options> curve-fitting
  - Limit Large ratios of residue/poles (old method)
  - Two-sided recursive convolution algorithm (new PSCAD V4.6.0)

| X |                                 | ase) Model   | 🖳 Frequen          |
|---|---------------------------------|--------------|--------------------|
| - |                                 |              | Curve Fitting      |
|   |                                 |              | ê 2↓ ♂ [           |
|   |                                 | r Range      | ▲ Curve F          |
|   | 0.5 [Hz]                        |              | Lower Li           |
|   | 1.0E6 [Hz]                      |              | Upper Li           |
|   | 100                             |              | Total Sol          |
|   | Characteristic Admittance (Yc)  |              |                    |
|   | 20                              | า            | Maximur            |
|   | 0.2 [%]                         | r            | Maximur            |
|   | Least Squares Weighting Factors |              |                    |
|   | 1.0                             |              | 0 to F0            |
|   | 1000.0                          |              | F0                 |
|   | 1.0                             |              | F0 to Fm           |
|   |                                 | I)           | Propaga            |
|   | 20                              | Group        | Maximur            |
|   | 0.2 [%]                         | r            | Maximur            |
|   | 100                             | io Tolerance | Maximur            |
|   | 0.2 [%]                         | Group        | Maximur<br>Maximur |

| Curve Fitting                        |            |
|--------------------------------------|------------|
| ∄ 2↓ 🚰 🛋                             |            |
| Curve Fitting Frequency Range        |            |
| Lower Limit                          | 0.5 [Hz]   |
| Upper Limit                          | 1.0E6 [Hz] |
| Total Solution Increments            | 100        |
| A Characteristic Admittance (Yc)     |            |
| Maximum Poles per Column             | 20         |
| Maximum Final Fitting Error          | 0.2 [%]    |
| Least Squares Weighting Factors      |            |
| 0 to F0                              | 1.0        |
| F0                                   | 1000.0     |
| F0 to Fmax                           | 1.0        |
| Propagation Function (H)             |            |
| Maximum Poles per Delay Group        | 20         |
| Maximum Final Fitting Error          | 0.2 [%]    |
| Maximum Residue/Pole Ratio Tolerance | 2.0e6      |



## **Improving stability**

- Cause: Passivity violations
- Solution:
  - Phase model options> curvefitting
  - Enable dc correction
  - Adequate shunt conductance
  - Reduce lower bound of fitting

| Frequency Dependent (Phase) Model |            |  |
|-----------------------------------|------------|--|
| Curve Fitting                     |            |  |
| 8≣ ≵↓ 🖀 📑                         |            |  |
| Curve Fitting Frequency Range     |            |  |
| Lower Limit                       | 0.01 [Hz]  |  |
| Upper Limit                       | 1.0E6 [Hz] |  |
| Total Solution Increments         | 100        |  |
| Characteristic Admittance (Yc)    |            |  |

| DC Correction |                                          |                 |  |
|---------------|------------------------------------------|-----------------|--|
| 2 2↓ 🚰 📑      |                                          |                 |  |
| 4             | DC Correction                            |                 |  |
|               | DC correction is                         | enabled         |  |
|               | Correction method                        | Functional Form |  |
|               | Eliminate error at very high frequencies | enabled         |  |
|               | Shunt conductance (for cables only)      | 1.0E-9 [mho/m]  |  |